NUTRITIONAL TRIALS AND DATA ANALYSIS

Dr. Shaukat Ali Bhatti

Institute of Animal Nutrition and Feed Technology University of Agriculture, Faisalabad

STATISTICS

- Research tool
- Deals with the collection, organization, analysis, and interpretation of data.
- Useful in drawing meaningful conclusions from a set of data
- You can make the data look the way you like, if you know how to do it (misuse)
- Should know why you are using?
- Should have focused questions to answer rather than reporting all possible relationships among all possible treatments

ANOVA

Analysis of Variance / Partitioning of variance
Understanding Variance:

- All individuals in a population are not similar
- They differ from each other.
- Population forms a bell shape curve
- We want to know whether this dissimilarity (variation) is a chance variation or otherwise
- Inherent variation of due to other factors
- Proportion of variation due to known variables is analysed

NUTRITIONAL TRIALS

- Growth Trials
- Production Trials
- Testing different treatments on any other aspect(s)

EXPERIMENTAL DESIGNS

- Completely Randomized Designs (CRD)
- Randomized Complete Block Designs (RCBD)
- Latin Square Designs (LSD)
- Factorial Experiments

LIMITATIONS OF EACH DESIGN

- CRD

When experimental units are homogenous
Have less variation
Randomization carried out using Random Number Tables

- RCBD
when experimental units can meaningfully grouped
Such groups are called blocks
- LSD

Double grouping
Where two major sources of variation are present

ANOVA for CRD

When we have 4 treatments and 4 replicates

Source of variation	Degree of freedom	Degree of freedom
Treatment	$(\mathrm{t}-1)$	3
Error	$\mathrm{t}(\mathrm{r}-1)$	12
Total	$(\mathrm{n}-1)$	15

ANOVA for RCBD

When we have 4 treatments and 4 replicates

Source of variation	Degree of freedom	Degree of freedom
Treatment	$(\mathrm{t}-1)$	3
Blocks	$(\mathrm{b}-1)$	3
Error	$(\mathrm{t}-1)(\mathrm{b}-1)$	9
Total	$(\mathrm{n}-1)$	15

ANOVA for 2×2 factorial arrangement

 When we have 4 treatments and 4 replicates| Source of variation | Degree of freedom | Degree of
 freedom |
| :--- | :---: | :---: |
| Treatment | $(\mathrm{t}-1)$ | 3 |
| Factor A | $(\mathrm{a}-1)$ | 1 |
| Factor B | $(\mathrm{b}-1)$ | 1 |
| $\mathbf{A x B}$ | $(\mathrm{a}-1)(\mathrm{b}-1)$ | 1 |
| Error | $\mathrm{ab}(\mathrm{r}-1)$ | 12 |
| Total | $(\mathrm{n}-1)$ | 15 |

ANOVA for factorial experiment

Two factor factorial 2×2 with 12 replicates each

Source of variation	Degree of freedom	Degree of freedom
Factor A	$(\mathrm{a}-1)$	1
Factor B	$(\mathrm{b}-1)$	1
Interaction AB	$(\mathrm{a}-1)(\mathrm{b}-1)$	1
Error	$\mathrm{ab}(\mathrm{r}-1)$	44
Total	$(\mathrm{n}-1)$	47

ANOVA for Latin Square Design

When we have 4 treatments and 4 replicates

Source of variation	Degree of freedom	Degree of freedom
Treatments	$(\mathrm{r}-1)$	3
Blocks (animals)	$(\mathrm{r}-1)$	3
Periods	$(\mathrm{r}-1)$	3
Error	$(\mathrm{r}-1)(\mathrm{r}-2)$	6
Total	$(\mathrm{n}-1)$	15

ANOVA for Latin Square Design

Four treatments and 4 replicates with 2×2 factorial arrangement

Source of variation	Degree of freedom	Degree of freedom
Treatments	$(\mathrm{r}-1)$	3
Factor A Factor B A x B	$(\mathrm{a}-1)$ $(\mathrm{b}-1)$ $(\mathrm{a}-1)(\mathrm{b}-1)$	1
Blocks (animals)	$(\mathrm{r}-1)$	1
Periods	$(\mathrm{r}-1)$	3
Error	$(\mathrm{r}-1)(\mathrm{r}-2)$	3
Total	$(\mathrm{n}-1)$	6

Example I

Effect of bST and Enzose on DMI and production performance of buffaloes

Abu Bakar Sufyan's MSc Data
Two levels of bST: bST0 and bST1 (250 mg)
Three levels of Enzose: ENZ1, ENZ2 and ENZ3 $(0,20,40)$
Two replicates per treatment
Data analysis
2×2 factorial arrangements

：区－1	－	Yiew Insert Format	Iools Da	Window	Help A	dobe PDF				help	$5 \times$
	I		｜\％成	－ 1	－$¢$	Q Σ ．	会 $\downarrow \mathrm{Z} \downarrow \mid 1$	43 100%			
！Ari		$\bullet 10 \sim \left\lvert\, \begin{aligned} & \text {－}\end{aligned}\right.$	$\underline{\mathbf{U}} \mid \underline{\underline{\underline{\underline{\underline{1}}}}}$				恝彗｜	－$\overbrace{}^{1}$－		率	
		－f_{x}									
	E	F	G	H	I	J	K	L	M	N	ヘ
31		bST1									
32		Count	2	2	2	6					
33		Sum	25.99	26.72	17.66	70.37					
34		Average	12.995	13.36	8.83	11.72833					
35		Variance	0.49005	0.1152	0.5202	5.291937					
36											
37		Tota！									
38		Count	4	4	4						
39		Sum	49.14	50.24	33.53						
40		Average	12.285	12.56	8.3825						
41		Variance	0.998833	1.2	0.660825						
42											
43											
44		ANOVA									
45		Source of Variation	SS	$d f$	MS	F	P－value	F crit			
46		Sample	5.109075	1	5.109075	9.574878	0.02127	5.987374			
47		Columns	43.67552	2	21.83776	40.92597	0.000319	5.143249			
48		Interaction	0.26835	2	0.134175	0.251456	0.785471	5.143249			
49		Within	3.20155	6	0.533592						
50											
51		Total	52.25449	11							
52											
53											v
14	\cdots	eet1／Sheet2／Shee	3／Sheet4				\leqslant				＞1
Read										NUM	
	art	㜿 Microsoft Excel	－Exa．．．	Microsoft	PowerPoint ．．					C	06：23

```
F SAS - [PROGRAM EDITOR - Abubakar Data PROC GLM running]
```

-

Jata one;
Input ENLEVEL\$ BSTLEVEL\$ DMI;
cards;

Enzose1	bST0	12.07
Enzose1	bST0	11.08
Enzose1	bST1	12.5
Enzose1	bST1	13.49
Enzose2	bST0	12.44
Enzose2	bST0	11.08
Enzose2	bST1	13.6
Enzose2	bST1	13.12
Enzose3	bST0	8.51
Enzose3	bST0	7.36
Enzose3	bST1	8.32
Enzose3	bST1	9.34

; ${ }^{\text {Proc GLM; }}$
Class ENLEVEL BSTLEVEL;
Model DMI = ENLEVEL BSTLEVEL ENLEVEL*BSTLEVEL;
means ENLEVEL BSTLEVEL ENLEVEL*BSTLEVEL /duncan;
1smeans ENLEVEL BSTLEVEL ENLEVEL*BSTLEVE/stderr;
Title 'Stat Analysis using factorial arrangements';
run;


```
F SAS - [OUTPUT - (Untitled) PROC GLM running]
```


匋 File Edit View Globals Options Window Help

\square

Dependent Variable: DMI

Source	DF
Model	5
Error	6
Corrected Total	11
	R-Square
	0.938732

Source	DF	Type I SS
ENLEVEL	2	43.67551667
BSTLEVEL	1	5.10907500
ENLEVEL*BSTLEVEL	2	0.26835000
Source	DF	
ENLEVEL	2	43.67551667
BSTLEVEL	1	5.10907500
ENLEVEL*BSTLEVEL	2	0.26835000

Sum of Squares
49.05294167
3.20155000
52.25449167
C.V.
6.595202

Type I SS
43.67551667 5.10907500 0.26835000

Type III SS
5.109075
0.26835000

Mean Square	F Value	Pr >F
$\mathbf{9 . 8 1 0 5 8 8 3 3}$	18.39	0.0014
0.53359167		
Root MSE		DMI Mean
0.7304735	11.07583333	

Mean Square	F Value	Pr >F
21.83775833	40.93	0.0003
5.10907500	9.57	0.0213
0.13417500	0.25	0.7855
Mean Square	F Value	Pr >F
21.83775833	40.93	0.0003
5.10907500	9.57	0.0213
0.13417500	0.25	0.7855

\mathbb{Z} Microsoft Excel - Exa...
. Microsoft PowerPoint ... SAS - [OUTPUT - (Unt...

Effect of BST and Enzose on DMI in

 buffaloes

Example II

Effect of Intake level and forage source on kinetics of fibre digestion

4×4 Latin Square design

2×2 factorial Arrangement
Factor I: Forage Source
Factor II: Intake level

Model Statement

proc glm;
class anim per trmt;
model dm = anim per trmt;
contrast 'grass vs leg+grass' trmt +1-1 +1 -1; contrast 'restrict vs ad lib' trmt +1 +1-1 -1; contrast 'interaction' trmt +1-1-1 +1;
Ismeans trmt/stderr;
means trmt/duncan;
run;
File: Latin Square Factorial Intake
-

* ${ }^{*}$ File Edit View Locals Globals Options Window Help

81 AGA $17.625 \quad 16.04820 \quad 14.92092 \quad 10.13611 \quad 6.606400 \quad 1.206767 \quad 5.3996343 .529713$
72 AGA 22.5520 .5434719 .0875212 .783228 .5387551 .5072387 .0315174 .244469
63 AGA $20 \quad 18.15679 \quad 16.83420 \quad 11.15296 \quad 7.3534341 .305841 \quad 6.047593 \quad 3.799528$
54 AGA 22.320 .0008217 .9529312 .828118 .3577111 .4050496 .9526624 .470405
$\begin{array}{lllllllllllllllll}6 & 1 & \text { RG } & 10 & 9.127073 & 8.590611 & 6.192421 & 3.992915 & 0.689663 & 3.303252 & 2.199505\end{array}$
52 RG 109.0791988 .5650626 .2403964 .0795630 .6605863 .4189772 .160832
83 RG $109.0875658 .5216126 .1234383 .937581 \quad 0.6370843 .3004972 .185855$
74 RG $108.9168708 .0509916 .4135084 .066170 \quad 0.6176523 .448518 \quad 2.347338$
51 RGA 109.0935758 .4552325 .821648 3.785081 $0.678893 \quad 3.1061882 .036566$
82 RGA $109.0620348 .447763 \quad 5.8205073 .8392570 .6594153 .1798411 .981248$
73 RGA 109.0499978 .4058735 .7194213 .7422540 .6514823 .0907711 .977165
64 RGA $108.9218618 .0414545 .8832353 .8104600 .618828 \quad 3.1916322 .072775$;
proc glm;
class anim per trmt;
model dm = anim per trmt;
contrast 'grass vs leg+grass' trmt +1 -1 +1 -1;
contrast 'restrict vs ad lib' trmt +1 +1 -1 -1;
contrast 'interaction' trmt +1-1-1 +1;
lsmeans trmt/stderr:
means trmt/duncan;
run;
\square

Effect of feed intake level and forage source on Kinetics of fibre digestion.. in Beef cattle

Example III

Effect of different feeding regimens on the growth performance of Sahiwal Calves

STAT ANALYSIS

DIFFERENT OPTIONS:

CRD
Trtmt I = Milk and SR
Trtmt II = Milk and Hay
Trtmt III = MR and SR
Trtmt IV = MR and Hay
Birth weight as Covariance????

RCBD

Milk and Milk Replacer

Sex as Blocks

CRD

2×2 Factorial Arrangement
Factor I: Liquid Diet, Milk vs milk replacer
Factor II: Starter ration+ Hay vs Hay only

MODEL STATEMENTS IN SAS

CRD

Effect of different feeding regimens: milk and MR with or without SR
Proc GLM;
Class trt sex;
Model wwt TWGain DWGain TMilk FCR = trt sex bwt;
contrast 'Milk vs CMR' TRT -1-1 +1 +1;
contrast 'Fodder Vs Concen' TRT +1-1 +1-1;
means trt sex /duncan;
Ismeans trt sex /stderr;
Title 'stat analysis using CRD';
run;

Model Finally used

Yijkl $=\mu+$ F1i +F2j + (F1 xF2)ij + BWTk + calfl + eijkl

Model Statement in SAS

proc mixed;
class fone ftwo id;
model DWGain = fone|ftwo bwt;
random id(fone*ftwo);
Ismeans fone|ftwo / bylevel om pdiff;
run;

File: SWL PI mixed models weight etc.sas
Output STAT mixed models.excel

Performance of Sahiwal calves given different dietary treatments

Parameters	Milk vs MR		SR vs Hay		Milk		MR		F1	F2	F1*F2
	Milk	MR	SR	Hay	SR	Hay	SR	Hay			
Weaning weights (kg)	$52 \pm .8$	$35 \pm .8$	$49 \pm .8$	$38 \pm .8$	56 ± 1	47さ1	40 ± 1	30 ± 1	0.0001	0.0001	0.66
Total weight gain (kg)	$30.0 \pm .8$	$14 \pm .8$	26 $\pm .8$	$18 \pm .8$	34 ± 1	26 ± 1	18 ± 1	10 ± 1	0.0001	0.0001	0.66
Daily growth rate (g/d)	357 ± 9	162 $\ddagger 9$	311さ9	208 ± 9	401 ± 13	310 ± 13	214 ± 13	115 ± 13	0.0001	0.0001	0.67

GROWTH TRIALS

- Repeated measure analysis
- What does it mean?

Model Statement

Yijklm $=\mu+$ Sex $i+F 1 j+F 2 k+W /+(S E X \times F 1 \times F 2 \times W) i j k l+C a l f m+$ eijklm

Model Statement in SAS

proc mixed;
class sex fone ftwo id wk;
model wt = sex|fone|ftwo|wk;
random id(fone*ftwo);
repeated wk / sub=id(fone*ftwo) type = ar(1);
Ismeans sex|fone|ftwo|wk / bylevel om pdiff;
run;
File: SWL PI mixed model growth curve

Growth Curve of Sahiwal Calves on different preweaning dietary regimens

Example IV

Economic feasibility of raising Lohi sheep and Beetal goats for meat production under high input system

Effect of different protein levels on the performance of Lohi Sheep with or without ionophores and Probiotics

Treatments
Fodder
Concentrate
LP MP HP
With or without lonophores
With or without Probiotics

Treatment plan

Fodder				Ionophores			Probiotics		
	LP	MP	HP	LP	MP	HP	LP	MP	HP

How to analyze this data?

- Analyze separately: delete Fodder and analyze the rest using 2×3 factorial design
- Imbalance design?
- CRD?
- Nested design?
- Fodder Vs Concentrate
- Ionophores vs probiotics
- Concentrate vS lonophores or Probiotics
- Linear Response?
- Quadratic Response?

Model Statement in SAS

- proc glm;
- class trmt;
- model TDMI DMI DMIBW CPI NDFI ADFI TGAIN DGAIN FCR FEEDC ECONO = trmt;
- contrast 'Fodder vs concentrates' trmt +1 +1 +1 +1 +1 +1 +1 +1 +1 -9;
- contrast 'Conc vs l+P' trmt -2 -2 -2 +1 +1 +1 +1 +1 +1 0;
- contrast 'I vs P' trmt $000-1-1-1+1+1+10$;
- contrast 'Linear conc' trmt -1 $0+10000000$;
- contrast 'Quadratic conc' trmt +1-2 +1 0000000 ;
- contrast 'Linear l' trmt 000-10 +10000;
- contrast 'Quadratic I' trmt $000+1-2+10000$;
- contrast 'Linear P' trmt 000000-10+10;
- contrast 'Quadratic P' trmt $000000+1$-2 +10;
- means trmt/duncan;
- Ismeans trmt/stderr;
- File: Linear Quadratic response

Linear, quadratic and cubic curves

Figure 19.1 General types of curves.

Calculation of digestion rate of fibre or protein

Fractional digestion rate?
Example of a Tank filled with water
Model fitting
$\mathrm{Ct}=\mathrm{CO} . \mathrm{e}(-\mathrm{kt})$
Where
Ct = amount of potentially digestible fibre remaining at any time.
C0 = amount of substrate remaining at time zero
e = exponential
k $\quad=$ fractional digestion rate
t = time

To solve the above equation,
take natural logarithm (In) of both the sides.
The above equation then becomes like the following:
In Ct = $\mathbf{l n} \mathbf{C O} \mathbf{- k t}$

Lag time= (In 100-intercept)/rate of digestion.

Example: digestion rate calculation. excel
Non linear Model in SAS:
Example: nonlinear model for digestion rate.sas

As a Nutritionist you should know

- What you want to do?
- You can draw the desired conclusions by changing a design
- Precision and accuracy
- Coefficient of variation
- Probability level
- Type I and Type II Error
- Standard Deviation vs Standard Error
- Sample size
- Treatments well apart to detect the difference
- Stat significance vs practical significance
- Interpretation of data: regression and correlation example
- Drawing conclusions

HOPE YOU UNDERSTOOD IT

Additional slides

Type I Error:
 Rejecting the null hypothesis when it is true

Type II

Accepting the null hypothesis when it is false

Precision and accuracy

Precision

the magnitude of difference between two treatments that an experiment is capable of detecting at a given level of significance

Accuracy
The degree of closeness with which a measurement can be made

The measurement can be accurate but not precise
Examples: Watch, Balance, Any equipment that change its results with calibration

Standard Deviation and Standard Error of mean

 Standard Deviation:Average Squared Deviation: Variance

$$
s^{2}=\frac{\Sigma\left(Y_{1}-Y\right)^{2}}{(n-1)}
$$

Root mean square Deviation:
Represented by small s for a sample and σ for a population

Deviation from mean of a Sample/ population

Standard Deviation of Mean or Standard Error

Standard Deviation applies to observation and Standard Error applies to means

Co efficient of variation:

A quantity used for evaluating results from different experiments

$$
=\frac{100 s}{\bar{Y}} \text { percent }
$$

Interpretation of Results

Describing results

Explaining results

Regression

The magnitude of change in a dependant variable as a result of per unit change in an independent variable

Or

Increase of decrease in a dependant variable as a result of per unit increase or decrease in an independent variable

Example: FCR

Correlation:

Measurement of relationship between two variables
Relationship could be positive or negative

Relationship between the number of storks flown over Tokyo city and number of births

Number of storks flown over Tokyo city

