Hypothesis Testing
Procedures

- Define null and research hypothesis, test statistic, level of significance and decision rule
- Understand Type I and Type II errors
- Differentiate hypothesis testing procedures based on type of outcome variable and number of samples

Mypothesis Testing

- Research hypothesis is generated about unknown population parameter
- Sample data are analyzed and determined to support or refute the research hypothesis

Hypothesis Testing Procedures

 Step 1Null hypothesis $\left(\mathrm{H}_{0}\right)$:
No difference, no change

Research hypothesis $\left(\mathrm{H}_{1}\right)$:
What investigator
believes to be true

Hypothesis Iesting Procedures

Step 2

Collect sample data and determine whether sample data support research hypothesis or not.

For example, in test for μ, evaluate $\overline{\text { x }}$

Hypothesis Testing Procedures

Step 3

- Set up decision rule to decide when to believe null versus research hypothesis
- Depends on level of significance, $\alpha=\mathrm{P}\left(\right.$ Reject $\mathrm{H}_{0} \mid$ H_{0} is true)

Hypothesis Testing Procedures

Steps 4 and 5

- Summarize sample information in test statistic (e.g., Z value)
- Draw conclusion by comparing test statistic to decision rule. Provide final assessment as to whether H_{1} is likely true given the observed data.

P-values

- P-values represent the exact significance of the data
- Estimate p-values when rejecting H_{0} to summarize significance of the data (can approximate with statistical tables, can get exact value with statistical computing package)
- P -value is the smallest α where we still reject H_{0}

Typothesis Testing Procedures

1. Set up null and research hypotheses, select α
2. Select test statistic
3. Set up decision rule
4. Compute test statistic
5. Draw conclusion \& summarize significance

Errors in Hypothesis Tests

Conclusion of Statistical Test
Do Not Reject $\mathrm{H}_{0} \quad$ Reject H_{0}
H_{0} true Correct Type I error
H_{0} false Type II error Correct

Hypothesis Testing for μ

- Conninuous outconie
- 1 Sample

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu=\mu_{0} \\
& \mathrm{H}_{1}: \mu>\mu_{0}, \mu<\mu_{0}, \mu \neq \mu_{0}
\end{aligned}
$$

Test Statistic
$n \geq 30$

$$
\mathrm{Z}=\frac{\overline{\mathrm{X}}-\mu_{0}}{\mathrm{~s} / \sqrt{\mathrm{n}}}
$$

$$
\mathrm{t}=\frac{\overline{\mathrm{X}}-\mu_{0}}{\mathrm{~s} / \sqrt{\mathrm{n}}} \quad \text { value in }
$$

Hypothesis Testing for μ

The National Center for Health Statistics (NCHS) reports the mean total cholesterol for adults is 203. Is the mean total cholesterol in Framingham Heart Study participants significantly different?

In 3310 participants the mean is 200.3 with a standard deviation of 36.8 .

Thypothesis Testing for μ

$$
\mathrm{H}_{1}: \mu \neq 203 \quad \alpha=0.05
$$

2. Test statistic

$$
\mathrm{Z}=\frac{\overline{\mathrm{X}}-\mu_{0}}{\mathrm{~s} / \sqrt{\mathrm{n}}}
$$

3. Decision rule

Reject H_{0} if $\mathrm{z} \geq 1.96$ or if $\mathrm{z} \leq-1.96$

Hypothesis Testing for μ

4. Compute test statistic

$$
Z=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}}=\frac{200.3-203}{36.8 / \sqrt{3310}}=-4.22
$$

5. Conclusion. Reject H_{0} because $-4.22 \leq-1.96$. We have statistically significant evidence at $\alpha=0.05$ to show that the mean total cholesterol is different in the Framingham Heart Study participants.

Table 1C. Critical Values for Two-Sided Tests

		Z	
0.20	1.282		
0.10	1.645		
0.05		1.960	
0.010		2.576	
0.001		3.291	
0.0001	3.819		$\mathrm{p}<0.0001$.

Hypothesis Testing for p

- Dichotomous outcome
- 1 Sample

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{p}=\mathrm{p}_{0} \\
& \mathrm{H}_{1}: \mathrm{p}>\mathrm{p}_{0}, \mathrm{p}<\mathrm{p}_{0}, \mathrm{p} \neq \mathrm{p}_{0}
\end{aligned}
$$

Test Statistic
$\min \left[\mathrm{np}_{0}, \mathrm{n}\left(1-\mathrm{p}_{0}\right)\right] \geq 5$

$$
\mathrm{Z}=\frac{\hat{\mathrm{p}}-\mathrm{p}_{0}}{\sqrt{\frac{\mathrm{p}_{0}\left(1-\mathrm{p}_{0}\right)}{\mathrm{n}}}}
$$

(Find critical value in Table 1C)

Dypothesis Testing for p

The NCHS reports that the prevalence of cigarette smoking among adults in 2002 is 21.1%. Is the prevalence of smoking lower among participants in the Framingham Heart Study?

In 3536 participants, 482 reported smoking.

Hypothesis Testing for p

$$
\mathrm{H}_{1}: \mathrm{p}<0.211 \quad \alpha=0.05
$$

2. Test statistic

$$
\mathrm{Z}=\frac{\hat{\mathrm{p}}-\mathrm{p}_{0}}{\sqrt{\frac{\mathrm{p}_{0}\left(1-\mathrm{p}_{0}\right)}{\mathrm{n}}}}
$$

3. Decision rule

Reject H_{0} if $\mathrm{z} \leq-1.645$

Hypothesis Testing for p

4. Compute test statistic

$$
\mathrm{Z}=\frac{\hat{\mathrm{p}}-\mathrm{p}_{0}}{\sqrt{\frac{\mathrm{p}_{0}\left(1-\mathrm{p}_{0}\right)}{\mathrm{n}}}}=\frac{0.136-0.211}{\sqrt{\frac{0.211(1-0.211)}{3536}}}=-10.93
$$

5. Conclusion. Reject H_{0} because $-10.93 \leq-1.645$. We have statistically significant evidence at $\alpha=0.05$ to show that the prevalence of smoking is lower among the Framingham Heart Study participants. ($\mathrm{p}<0.0001$)

Hypothesis lesting for Discrete

 Outcomes**- 1 Sample

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{10}, \mathrm{p}_{2}=\mathrm{p}_{20}, \ldots, \mathrm{p}_{\mathrm{k}}=\mathrm{p}_{\mathrm{k} 0} \\
& \mathrm{H}_{1}: \mathrm{H}_{0} \text { is false }
\end{aligned}
$$

Test Statistic

$$
\chi^{2}=\sum \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}
$$

(Find critical value in Table 3)

* χ^{2} goodness-of-fit test

x^{2} goodness-of-fit test

A university survey reveals that 60% of students get no regular exercise, 25% exercise sporadically and 15% exercise regularly. The university institutes a health promotion campaign and reevaluates exercise one year later.

Regular

x^{2} goodness-offit test

1. $\mathrm{H}_{0}: \mathrm{p}_{1}=0.60, \mathrm{p}_{2}=0.25, \mathrm{p}_{3}=0.15$
$\mathrm{H}_{1}: \mathrm{H}_{0}$ is false

$$
\alpha=0.05
$$

2. Test statistic

$$
\chi^{2}=\sum \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}
$$

3. Decision rule $\quad d f=k-1=3-1=2$

Reject H_{0} if $\chi^{2} \geq 5.99$

4. Compute test statis		$\chi^{2}=\sum \frac{(O-E}{E}$		
No. students (O)	None Sporadic		ar Total	
	255	125	90	470
Expected (E)	282	117.5	70.5	470
$(\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}$	2.59	0.48	5.39	

$$
v^{2}=846
$$

x^{2} goodness-of-fit test

5. Conclusion. Reject H_{0} because $8.46 \geq 5.99$. We have statistically significant evidence at $\alpha=0.05$ to show that the distribution of exercise is not 60%, 25%, 15\%.

Using Table 3, the p -value is $\mathrm{p}<0.005$.

Eypothesis Testing for ($\mu_{1}-$ H_{2}

- Continuous outcome
- 2 Independent Sample

Test Statistic

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2} \\
& \mathrm{H}_{1}: \mu_{2}>\frac{\mu_{2}, \overline{\mathrm{X}}_{11}-\overline{\mathrm{X}_{2}}, \mu_{1}}{\mathrm{Sp} \sqrt{\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}}} \mu_{1} \neq \mu_{2}
\end{aligned}
$$

$\mathrm{n} 1 \geq 30$ and
$\mathrm{n}_{2} \geq 30$

$$
\mathrm{t}=\frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}{\mathrm{Sp} \sqrt{\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}}}
$$

(Find critical value in Table 1C,

Pooled Estimate of Common
 Standard Deviation, Sp

- Previous formulas assume equal variances $\left(\sigma_{1}^{2}=\sigma_{2}^{2}\right)$
- If $0.5 \leq \mathrm{s}_{1}{ }^{2} / \mathrm{s}_{2}{ }^{2} \leq 2$, assumption is reasonable

$$
\mathrm{Sp}=\sqrt{\frac{\left(\mathrm{n}_{1}-1\right) \mathrm{s}_{1}^{2}+\left(\mathrm{n}_{2}-1\right) \mathrm{s}_{2}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}}
$$

Hypothesis Testing for $\left(\mu_{1}-\mu_{2}\right)$

A clinical trial is run to assess the effectiveness of a new drug in lowering cholesterol. Patients are randomized to receive the new drug or placebo and total cholesterol is measured after 6 weeks on the assigned treatment.

Is there evidence of a statistically significant reduction in churesureus for patients on the new drug?

Hypothesis Testing for $\left(\mu_{1}-\mu_{2}\right)$

Sample Size
Mean Std
Dev
New Drug
15
195.9

Placebo 30.3

15
227.4

Example 7.2.

Hypothesis Testing for $\left(\mu_{1}-\mu_{2}\right)$

1. $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$

$$
\mathrm{H}_{1}: \mu_{1}<\mu_{2}
$$

2. Test statistic

$$
\begin{aligned}
& \alpha=0.05 \\
& \mathrm{t}=\frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}{\operatorname{Sp} \sqrt{\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}}}
\end{aligned}
$$

3. Decision rule, $\mathrm{df}=\mathrm{n}_{1}+\mathrm{n}_{2}-2=28$

Reject H_{0} if $\mathrm{t} \leq-1.701$

Assess Equality of Variances

\square Ratio of sample variances: $28.1^{2 / 30.3^{2}=0.90}$

$$
\begin{aligned}
& S p=\sqrt{\frac{\left(n_{1}-1\right) \mathrm{s}_{1}^{2}+\left(\mathrm{n}_{2}-1\right) \mathrm{s}_{2}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}} \\
& \mathrm{Sp}=\sqrt{\frac{(15-1) 28.7^{2}+(15-1) 30.3^{2}}{15+15-2}}=\sqrt{870.89}=29.5
\end{aligned}
$$

Example 7.2.

Hypothesis Testing for $\left(\mu_{1}, \mu_{2}\right)$

4. Compute test statistic

$$
\mathrm{t}=\frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}{\operatorname{Sp} \sqrt{\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}}}=\frac{195.9-227.4}{29.5 \sqrt{\frac{1}{15}+\frac{1}{15}}}=-2.92
$$

5. Conclusion. Reject H_{0} because $-2.92 \leq$
-1.701 . We have statistically significant evidence at $\alpha=0.05$ to show that the mean cholesterol level is lower in patients on treatment as compared to placebo. (p<0.005)

Hypothesis Testing for μ_{0}

- Continuous outcome

- 2 Matched/Paired Sample

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{\mathrm{d}}=0 \\
& \mathrm{H}_{1}: \mu_{\mathrm{d}}>0{ }_{\mathrm{X}_{\mathrm{d}}}<\mu_{\mathrm{d}}, \mu_{\mathrm{d}} \neq 0 \\
& \mathrm{c} \quad \mathrm{Z}=\frac{\mathrm{X}_{\mathrm{d}}}{\mathrm{~s}_{\mathrm{d}} / \sqrt{\mathrm{n}}}
\end{aligned}
$$

Test Statistic
$\mathrm{n} \geq 30$

$$
\mathrm{t}=\frac{\overline{\mathrm{X}}_{\mathrm{d}}-\mu_{\mathrm{d}}}{\mathrm{~s}_{\mathrm{d}} / \sqrt{\mathrm{n}}} \quad \text { in Table 1C, } \quad \text { (Find critical value }
$$

Example 7. 10

Hypothesis Testing for μ_{d}

Is there a statistically significant difference in mean systolic blood pressures (SBPs) measured at exams 6 and 7 (approximately 4 years apart) in the Framingham Offspring Study?

Among n=15 randomly selected participants, the mean difference was -5.3 units and the standard deviation was 12.8 units. Differences were computed by subtracting the exam 6 value from the exam 7 valuc.

Example 7. 10.

Hypothesis Testing for μ_{d}

1. $\mathrm{H}_{0}: \mu_{\mathrm{d}}=0$

$$
\mathrm{H}_{1}: \mu_{\mathrm{d}} \neq 0 \quad \alpha=0.05
$$

2. Test statistic

$$
\mathrm{t}=\frac{\overline{\mathrm{X}}_{\mathrm{d}}-\mu_{\mathrm{d}}}{\mathrm{~s}_{\mathrm{d}} / \sqrt{\mathrm{n}}}
$$

3. Decision rule, $\mathrm{df}=\mathrm{n}-1=14$

Reject H_{0} if $\mathrm{t} \geq 2.145$ or if $\mathrm{z} \leq-2.145$

Example 7.10.

Hypothesis Testing for μ_{c}

4. Compute test statistic

$$
\mathrm{t}=\frac{\overline{\mathrm{X}}_{\mathrm{d}}-\mu_{\mathrm{d}}}{\mathrm{~s}_{\mathrm{d}} / \sqrt{\mathrm{n}}}=\frac{-5.3-0}{12.8 / \sqrt{15}}=-1.60
$$

5. Conclusion. Do not reject H_{0} because $-2.145<$ $-1.60<2.145$. We do not have statistically significant evidence at $\alpha=0.05$ to show that there is a difference in systolic blood pressures over time.

Frybothesis Eest rig for (9) p_{2}

- Dichotomous outcome
- 2 Independent Sample

$$
\begin{gathered}
\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2} \\
\mathrm{H}_{1}: \mathrm{p}_{1}>\mathrm{p}_{2}, \mathrm{p}_{1}<\mathrm{p}_{2}, \mathrm{p}_{1} \neq \mathrm{p}_{2} \\
\min \left[\mathrm{n}_{2} \hat{\mathrm{p}}_{1}, \mathrm{n}_{1}\left(1-\hat{\mathrm{p}}_{1}\right), \mathrm{n}_{2} \hat{\mathrm{p}}_{2}, \mathrm{n}_{2}\left(1-\hat{\mathrm{p}}_{2}\right)\right] \geq 5 \\
\operatorname{Test} \operatorname{Statistic} \hat{\mathrm{p}}_{1}-\hat{\mathrm{p}}_{2}
\end{gathered}
$$

(Find critical value
in Table 1C)

Example 7.12.

Hypothesis Testing for $\left(\rho_{1}-\rho_{2}\right)$

Is the prevalence of CVD aifferent in smokers as compared to nonsmokers in the Framingham Offspring Study?

	Free of CVD	History of CVD	Total
Nonsmoker	2757	298	3055
Current smoker	663	81	744
Total	3420	379	3799

Example 7.12.

Hypothesis Testing for $\left(p_{1}-\rho_{2}\right)$

1. $\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2}$

$$
\mathrm{H}_{1}: \mathrm{p}_{1} \neq \mathrm{p}_{2} \quad \alpha=0.05
$$

2. Test statistic

$$
\mathrm{Z}=\frac{\hat{\mathrm{p}}_{1}-\hat{\mathrm{p}}_{2}}{\sqrt{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})\left(\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}\right)}}
$$

3. Decision rule

Reject H_{0} if $\mathrm{Z} \leq-1.96$ or if $\mathrm{Z} \geq 1.96$

Example 7.12.

Hypothesis Testing for $\left(p_{1}-p_{2}\right)$

4. Compute test stat1st1c

$$
\begin{aligned}
& Z=\frac{\hat{\mathrm{p}}_{1}-\hat{\mathrm{p}}_{2}}{\sqrt{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})\left(\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}\right)}} \quad \hat{\mathrm{p}}_{1}=\frac{81}{744}=0.1089, \hat{\mathrm{p}}_{2}=\frac{298}{3055}=0.0975 \\
& \hat{\mathrm{p}}=\frac{81+298}{744+3055}=0.0988 \\
& Z=\frac{0.1089-0.0975}{\sqrt{0.0988(1-0.0988)\left(\frac{1}{744}+\frac{1}{3055}\right)}}=0.927
\end{aligned}
$$

Eypoothesis Eestrig for (p) P_{2}

5. Conclusion. Do not reject H_{0} because $-1.96<$ $0.927<1.96$. We do not have statistically significant evidence at $\alpha=0.05$ to show that there is a difference in prevalent CVD between smokers and nonsmokers.

Hypothesis Testing for More than 2

Contmuous outcome
■ k Independent Samples， $\mathrm{k}>2$

$$
\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3 \ldots}=\mu_{\mathrm{k}}
$$

（Find critical value in＇ıaиルェノ
＊Analysis of Variance

Source of Sums of

Variation
Squares

Between $\quad \operatorname{SSB}=\Sigma_{\mathrm{n}_{\mathrm{j}}}\left(\overline{\mathrm{X}}_{\mathrm{j}}-\overline{\mathrm{X}}\right)^{2}$
Treatments
MSE

$$
\begin{aligned}
& \mathrm{SSE}=\Sigma \Sigma\left(\mathrm{X}-\overline{\mathrm{X}}_{\mathrm{j}}\right)^{2} \mathrm{k}-1 \quad \mathrm{SSB} / \mathrm{k}-1 \mathrm{MSB} / \\
& \mathrm{SST}=\Sigma \Sigma(\mathrm{X}-\overline{\mathrm{X}})^{2}
\end{aligned}
$$

Error

Table

Total
N-1

Example ANOVA

among 4 different diet programs? (Data are pounds lost over 8 weeks)

Low-Cal	Low-Fat	Low-Carb	Control
8	2	3	2
9	4	5	2
6	3	4	-1
7	5	2	0
3	1	3	3

Example ANOVA

1. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
H_{1} : Means are not all equal $\quad, \alpha=0.05$
2. Test statistic $\underset{\mathrm{F}}{=} \frac{\sum \mathrm{n}_{\mathrm{j}}\left(\overline{\mathrm{X}}_{\mathrm{j}}-\overline{\mathrm{X}}\right)^{2} /(\mathrm{k}-1)}{\Sigma \Sigma\left(\mathrm{X}-\overline{\mathrm{X}}_{\mathrm{j}}\right)^{2} /(\mathrm{N}-\mathrm{k})}$

Example ANOVA

3. Decision rule

$$
\begin{aligned}
& \mathrm{df}_{1}=\mathrm{k}-1=4-1=3 \\
& \mathrm{df}_{2}=\mathrm{N}-\mathrm{k}=20-4=16
\end{aligned}
$$

Reject H_{0} if $\mathrm{F} \geq 3.24$

Overall Mean = 3.6

Example 7.14. ANOVA

$$
\begin{aligned}
& \quad \mathrm{SSB}=\sum \mathrm{n}_{\mathrm{j}}\left(\overline{\mathrm{X}}_{\mathrm{j}}-\overline{\mathrm{X}}\right)^{2} \\
& =5(6.6-3.6)^{2}+5(3.0-3.6)^{2}+5(3.4-3.6)^{2}+5(1.2-3.6)^{2} \\
& =75.8
\end{aligned}
$$

Example 7.14.

 ANOVA$$
\text { SSE }=\Sigma \Sigma\left(\mathrm{X}-\mathrm{X}_{\mathrm{j}}\right)^{2}
$$

Low-Cal	$(\mathrm{X}-6.6)$	$(\mathrm{X}-6.6)^{2}$
8	1.4	2.0
9	2.4	5.8
6	-0.6	0.4
7	0.4	0.2
3	-3.6	13.0
Total	0	21.4

Example 7.14. ANOVA

$\mathrm{SSE}=\Sigma \Sigma\left(\mathrm{X}-\overline{\mathrm{X}}_{\mathrm{j}}\right)^{2}$
$=21.4+10.0+5.4+10.6=47.4$

Examiple $7 / 5^{-4}$ ANOVA

4. Compute test statistic

$$
\mathrm{F}=8.43
$$

5. Conclusion. Reject H_{0} because $8.43 \geq 3.24$. We have statistically significant evidence at $\alpha=0.05$ to show that there is a difference in mean weight loss among 4 different diet programs.

Hypothesis Testing for Discrete Outcomest

- Discrete (ordinal or categorical) outcome
- 2 or More Samples
$\mathrm{H}_{0}:$ The distribution of the outcome is
independent of the groups

$$
\mathrm{H}_{1}: \mathrm{H}_{0} \text { is false }_{2}=\sum \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}
$$

Test Statistic
(Find critical value in table 3)

Example

x^{2} test of independence

Is there a relationship between students living arrangement and exercise status?

Exercise Status

None Sporadic Regular Total

Dormitory
32
30
$28 \quad 90$
On-campus Apt
74
64
42180
Off-campus Apt
110
25
15150
At Home
39
6
550
Total
255
125
90470

Example

x^{2} test of independence

1. $\varepsilon_{0} \cdot$ Living arrangenneni ana exercise slatus are independent
$\mathrm{H}_{1}: \mathrm{H}_{0}$ is false

$$
\alpha=0.05
$$

$$
\chi^{2}=\sum \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}
$$

2. Test statistic
3. Decision rule

$$
\mathrm{df}=(\mathrm{r}-1)(\mathrm{c}-1)=3(\angle)=0
$$

Thamiple

x^{2} test of independence

4. Compute test statistic

$$
\chi^{2}=\sum \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}
$$

$\mathrm{O}=$ Observed frequency
$\mathrm{E}=$ Expected frequency
$\mathrm{E}=($ row total $) *($ column total $) / \mathrm{N}$

4. Compute test statistic

$$
\begin{aligned}
& \chi^{2}=\frac{(32-48.8)^{2}}{48.8}+\frac{(30-23.9)^{2}}{23.9}+\frac{(28-17.2)^{2}}{17.2}+\ldots+\frac{(5-9.6)^{2}}{9.6} \\
& \chi^{2}=60.5
\end{aligned}
$$

Example

x^{2} test of independence

5. Conclusion. Reject H_{0} because $60.5 \geq 12.59$. We have statistically significant evidence at $\alpha=0.05$ to show that living arrangement and exercise status are not independent. $(\mathrm{P}<0.005)$

Ch 6 g\&m, Q 6,10,22,23.

6. The data below represent the systolic blood pressures (in mmHg) of 14 patients undergoing drug therapy for hypertension. Assuming normality of systolic blood pressures, on the basis of these data can you conclude that the mean is significantly less than 165 mmHg ?

183152178157194163144 194163114178152118158

- The hypotheses are $H 0: \mu \geq 165 \mathrm{mmHg}$ versus $H a: \mu<165 \mathrm{mmHg}$.
- $t=-0.671$ and the P value $=0.2550$.
- So accept $H 0$; we cannot conclude the mean systolic blood pressure is significantly less than 165 mmHg .

10. Recently there have been concerns about the effects of phthalates on the development of the male reproductive system. Phthalates are common ingredients in many plastics. In a pilot study a researcher gave pregnant rats daily doses of $750 \mathrm{mg} / \mathrm{kg}$ of body weight of DEHP (di-2ethylhexyl phthalate) throughout the period when their pups' sexual organs were developing. The newly born male rat pups were sacrificed and their seminal vesicles were dissected and weighed. Below are the weights for the eight males (in mg).

17101630158016701350165016001650

If untreated newborn males have a mean of 1700 mg , can you say that rats exposed to DHEP in utero have a significantly lower weight?

The hypotheses are $H 0: \mu \geq 1700 \mathrm{mg}$ versus $H a: \mu<1700 \mathrm{mg}$.
For a t test, the c.v. $=-1.895$.
$t=-2.44$. Since $-2.44<-1.895$
reject $H 0$. Exposure to DEHP significantly decreases seminal vesicle weight.
22. The hypotheses are $H 0: \mu \leq 12.5$ yr versus $H a: \mu>12.5$ yr. Use a t test with $\alpha=0.05$.
$X=14.75 \mathrm{yr}, n=10$, and $s=0.84 \mathrm{yr}$.
$\mathrm{c} . \mathrm{V}$. $=1.833$.
$t=X-\mu / s \sqrt{n}=14.75-12.5 / 0.84 / \sqrt{ } 10=2.25 / 0.27=\mathbf{8 . 3 3}$.

- Since $8.33>1.833$, reject $H 0$. Menarche is significantly later in worldclass swimmers.

23. Redo Problem 6 in Chapter 1 as a test of hypothesis question.

The hypotheses are $H 0: \mu \leq 24$ hours versus $H a: \mu>24$ hours.
For a t test with $\alpha=0.05$.
$X=14.75 \mathrm{yr}, n=15$, and $s^{2}=0.849 \mathrm{hr}^{2}$. c.v. $=1.761$.
$t=X-\mu / s \sqrt{ }=25.87-24 / 0.92 / \sqrt{ } 15=1.87 / 0.24=7.79$.

- Since $7.79>1.761$, reject $H 0$. The average day for bunkered people is significantly longer than 24 hours.

